Government General Degree College Chapra Curriculum Plan under NEP 2020 Department of Mathematics B.Sc Mathematics (Major Course) Semester- V

Semester	Period of	Course	Name of the	Paper Name	Brief Description of	Number
	Semester	Code	Faculty		the Topic	of
						Lecture
SEM- V	July- December	MATH- M-T-06	Dr. Asim Kumar Das	Riemann Integration and Series of Function	Riemann integration: inequalities of upper and lower sums, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition, Riemann integral through Riemann sums.	25 L
					Equivalence of two definitions. Riemann integrability of monotone and continuous functions, properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions.	
					Fundamental theorem of integral calculus. 1st and 2nd mean value theorems for integral calculus. Fourier series: Definition of Fourier coefficients and series, examples of Fourier expansions and summation results for series.	

	Biswajit Paul	Reimann Integration And Series of Function	Improper integration: Type1, Type2. Necessary and sufficient condition for convergence of improper integral in both cases. Cauchy's Criterion. Cauchy's principal value. Tests of convergence: Comparison and μ -test. Absolute and non- absolute convergence and. Abel's and Dirichlet's test for convergence on the integral of a product. Convergence of Beta and Gamma functions. Relation between beta and related problems.	25 L
	Dr. Aninda Chakraborty	Reimann Integration and Series of Function	Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions. Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test. Power series, radius of convergence, Cauchy Hadamard theorem. Differentiation and integration of power series; Abel's theorem; Weierstrass approximation theorem.	25 L

4						
	_	MATH- M-T-06	Dr. Asim Kumar Das	Numerical Analysis (Theory & Practical)	Algorithms, convergence, errors, relative, absolute, round-off, truncation errors.	20L
					Interpolation, Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory forward and backward difference interpolation. Central difference interpolation formula: Stirling and Bessel interpolation	
					Numerical differentiation, methods based on interpolations, methods based on finite differences.	
					Numerical integration, Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd rule, Simpson's 3/8th rule, Weddle's rule, Boole's rule. Midpoint rule, composite trapezoidal rule, composite Simpson's 1/3rd rule, Gauss quadrature formula.	
				NT	Transcender (1, 1, 1	20.1
			Dr. Anında Chakrabarty	Numerical Analysis (I ranscendental and polynomial equations, bisection method,	20 L

		Theory & Practical)	Newton's method, secant method, Regula- falsi method, fixed point iteration, Newton-Raphson method, rate of convergence of these methods. System of linear algebraic equations, Gaussian elimination and Gauss Jordan methods, Gauss Jacobi method, Gauss Seidel method and their convergence analysis, LU decomposition The algebraic eigenvalue problem, power method. Approximation, least square polynomial approximation.	
	Biswajit Paul	Numerical Analysis (Theory & Practical)	Ordinary differential equations: The method of successive approximations, Euler's method, the modified Euler method, Runge-Kutta methods of orders two and four. List of Practical Problems (Using C programming) (i) Bisection Method. (ii) Newton Raphson Method. (iii) Secant Method. (iv) Regula Falsi Method. (v) LU decomposition Method. (vi) Gauss-Jacobi Method.	25 L

	 (vi) Gauss-Seidel Method. (vii) Lagrange's Interpolation (viii) Trapezoidal Rule. (ix) Simpson's 1/3rd rule. (x) Euler's method.

Government General Degree College Chapra Curriculum Plan under NEP 2020 **Department of Mathematics B.Sc Mathematics (Minor Course)**

Semester- V						
6	Paper	Brie				

Sem ester	Period of Semes	Course Code	Name of the Faculty	Paper Name	Brief Description of the Topic	Numbe r of Lecture
SEM - V	July- Decem ber	MATH- MI – T – 03	Biswajit Paul	Linear Program ming Problem	Introduction to linear programming problems, Graphical solution of LPP. Convex sets. Basic solutions and non-basic solutions. Reduction of B.F.S from B.S.	15 L
			Dr. Asim Kumar Das	Linear Program ming Problem	Simplex method, Big- <i>M</i> , two- phase method, method and their comparison. Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual.	15 L

	Dr. Aninda Chakrabart y	Linear Program ming Problem	Transportation problem and its mathematical formulation, northwest-corner method, least cost method and Vogel approximation method for determination of initial basic solution. Algorithms for solving transportation problems. Assignment problem and its	15 L
			mathematical formulation, Hungarian method for solving assignment problem.	